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LARGE DISPLACEMENT THEORY OF THIN-WALLED
CURVED MEMBERS AND ITS APPLICATION TO
LATERAL-TORSIONAL BUCKLING ANALYSIS
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Abstract—The purpose of this study is to establish a one dimensional large displacement theory for
plane-curved members with thin-walled open sections. Consequently, this theory is applied in the analysis
of lateral-torsional buckling of circular arches. Typical numerical examples are shown herein to illustrate
how the ratio of different types of rigidities in non-dimensional form affects the buckling loads.
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NOTATION

area of cross section

rise of a circular arch (Fig. 3)

span of a circular arch (Fig. 3)

= 5,0 = ©

modulus of elasticity

quantity defined in eqn (20a)

shear modulus

quantity defined in eqn (20b)

distance between the applied uniformly distributed loads on the horizontal projection and the
crown of circular arch (Fig. 3)

moments of inertia about x, y axes and product of inertia

warping moment of inertia

warping product of inertia about x and y axes defined by eqns (30) and (52)

stress resultants defined in eqns (28)

St. Venant torsional constant

arc length of a circular arch

direction cosines defined by eqns (7)

bending moments about x, y axes, bimoment, axial force

stress resultants defined in egns (28)

curvilinear coordinate system (Fig. 2)

externally applied uniformly distributed loads defined in egns (27)

uniformly distributed load applied on the horizontal projection

radii of curvature of points C, O, §

radius of curvature of an arbitrary point on the cross section

displacement components in x, y, 8 directions

displacement components of point S in x, y, # directions

displacement components in x, @ directions at the point of applying the external forces

displacement components of point C in @ direction

cylindrical coordinate system with origin at point O (Fig. 2)

x and y coordinate of point C

x and y coordinate of point S

non-dimensional parameters defined by eqns (51) and eqn (42h)

& variational operator

I,¢,¢,
€ ‘y' €, 71;: 7’0- Yxo
You: Yos

quantities defined by eqns (42)
strain components in x, y, # coordinate system
shear strains components on s and 6n planes

B angle of twist

A

Prs Ps
&0
¢B"l ¢m’

w

non-dimensional form of buckling load defined by eqn (50)

normal and tangtential distance in n, s directions defined by eqns (7)

displacement components of any point on the cross section in the » and s directions
displacement functions

unit warping defined by egn (20c)
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0%, (F guantities defined by egns (18)
6,6, values of 8 at both ends of the curved member
o half of the subtended angle of circular arch
{ )* denotes the quantity defined along the middle line of thin wall
(Y déeyo ) '
{ ) denotes the quantity at initial stage before buckling

1. INTRODUCTION

A structural member is called thin-walled member if its thickness is relatively small as
compared with any characteristic dimension of its cross section, and the cross-sectional dimen-
sions are small as compared with its length. Due to the small thickness, thin-walled members
possessing maximum stiffnesses for minimum weight are extensively used in engineering
practices. They may be the roofs of industrial buildings on earth, the long span main girders of
a bridge across a river, the wings and fuselages of an airplane in the air, the hull of a ship on the
sea or a submarine in the sea, as well as of a rocket in space.

The linear elastic behavior of thin-walled curved members under various types of loading
has been studied by numerous investigators{1-11]. Nishino and Fukasawa[11] have classified
those studies into three categories depending on the accuracy of treating the geometry of
curved members. In the first approach, the initial radius of curvature of the member is assumed
to be large so that its difference over the cross section is entirely ignored. Viasov’s work[1]
belongs to this category. In the studies of the second category, although the difference between
the initial radius of curvature of the centroid and the shear center of the cross section is
considered in the formulations, the cross-sectional properties obtained are the same as those for
straight members. The works by Cheney[4] and by Dabrowski{7, 8] belong to this category. In
the third approach, which is considered to be the most rigorous analysis, the difference of initial
radius of curvature of the member over the cross section is taken into consideration and the
cross-sectional properties are defined as functions of an initial radius of curvature of an arbitrary
point on the cross section. Konishi and Komatsu{2, 3], Kuranishi[5], Fukasawa[6], Nitzsche and
Miller[9], Williams [10], and Nishino and Fukasawa[11] have developed their theories using this
approach.

Although linear elastic analysis of thin-walled curved members are well established, only a
few studies have been published on large displacement theory of thin-walled curved members.
Namita[12] derived equations of equilibrium from geometric considerations of the deformed
curved members and applied them to the analysis of lateral-torsional buckling of circular
arches. Namita's theory belongs to the first category in the above classification. Enda[13, 14]
analyzed large displacement behavior of horizontally curved girders. He derived the fun-
damental equations of equilibrium from geometric considerations of the deformed plane-curved
members[13] as well as from the principle of minimum potential energy for initial stress
problems[14, 15]. His theory also belongs to the first category. A more rigorous nonlinear
theory of curved beams has been developed by Usuki[16], who integrated the Novozhilov's
nonlinear strain-displacement equations for thin shells of revolution[17] to obtain the relations
between strain and displacement components of an arbitrary point on the cross section of a
curved member. The theory has been applied to the analysis of lateral-torsional buckling of
circular arches subjected to equal end moments. More recently, Nair and Hegemier[18)
succeeded in deriving a system of linear equations governing the small deformations of an
initially stressed, curved member through the use of the principle of virtual work for initial
stress problems[15]. Transverse shear deformations are particularly incorporated into the
formulations, but the warping torsional effects are not considered.

In this study, a rigorous large displacement theory of curved members, which belongs to the
third category, is presented. The approach of this study is basically the extension of the large
displacement theory of thin-walled straight members developed by Nishino ef al.{19, 20] to the
thin-walled curved members with open sections. This large displacement theory will be
established from a set of simple and realistic assumptions, which have normally been used in
thin-walled beams analysis, and the variational principles in elasticity. The advantage of this
approach is that the geometry of the deformed curved members need not be considered in the
formulations.
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The merit of this established large displacement theory will be further illustrated by its
application in the analysis of lateral-torsional buckling of circular arches. The governing
equation for lateral-torsional buckling is derived by using the derived strain-displacement
relations through the Euler method in a variational principle. A typical example will be shown
to illustrate how the different values of non-dimensional parameters, in term of the ratio of
different types of rigidities, affect the buckling loads of circular arches with thin-walled open
sections.

2. VARIATIONAL FORMULATION FOR CURVED MEMBERS WITH
THIN-WALLED OPEN SECTIONS

2.1 Basic assumptions

In this study, a set of basic assumptions which have normally been made in the thin-walled
beams analysis, are used in the formulations. The pertinent assumptions in this regard are as
follows: (1) the length of the member is much larger than any cross section dimensions; (2) the
displacements are small but finite; (3) the cross sections do not distort; (4) the shear strains due
to shear stress in equilibrium with the changes of normal stresses are small and can be
neglected (Euler-Bernouli hypothesis); (5) the shear strains in the planes normal to the middle
surface of thin walls are small and can be neglected.

2.2 Three-dimensional strain-displacement relations in cylindrical coordinate system
Consider a circular curved member with the center of curvature O’ as shown in Fig. 1. The
general three dimensional finite strain-displacement relations, in cylindrical coordinate system

=8,

)

Fig. 1. Curved member with thin-walled section.

(r, 8, z), which could be derived from tensor calculus and differential geometry, as indicated by
Washizu[15], are given in the following:

] () 2]

e (5 -w) +(Gir+n) + (3]

€ r80+ +7[ Uy ) + ao*"’ + 29 (1b)
u, 17 (ou, au.) (au,)’]
= ——i —_— fhaad 4

«= G5 [(Ge) + () + (3 (19
-1 du, ug  10u, du, ugou, 1 03u, Uy

7"—?5'7 or "ror38 rar ror 30

rar T rar a6 (1d)
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=__ You, 10u ou, U 3y 103Uy 3ty
Yer rod roz a6 r oz rab az
u, duty 1 du, du,
r iz raf az (Ie)
- OU,  ou,  0u, 3u, A Ous Uy  du; du, an
Yr=er T ar T ar 3z ' or oz | or oz

where u,, uy and u, are the displacements in r, 8 and z directions, respectively; and €, € and ¢,
are the normal strains; and ., vs. and y,, are the shear strains.

2.3 Displacement components for curved members with thin-walled open sections

Consider a thin-walled open crosssection shown in Fig. 2. In the following derivation, two
coordinate systems are used to describe the location of a point on the member. The first is the
cylindrical coordinate system (x, y, @) whose origin is taken arbitrarily at point O. The other is
the curvilinear coordinate system (n, s, 8) used to describe a point on the section, where s is
taken along the middle surface of the thin wall, and n is normal to it, with the origin selected at
D. The orientations of these two systems follow the right hand rule. Therefore, the general
strain-displacement relations egn (1) can be written in the following form, as referred to-the
(x, y, 8) coordinate system.

w50l ()G =
1—0 s ) )+ G @

ot (8 (2]

lou w aw louou wau 1owow

Yo=1%0 r ax Traxad rax rox a6
uaw 1avadv
r ox + r ox a6 @d

-
Y=oy T30 rayad r ay a6
udw 14dvdv
————— 2e
+ray+r6y30 (2¢)
au+av+auau dvdv  dwiw

2
gy ax dxdy oxdy ox ay 2

Yry =

where u, v and w denote the displacements in x, y and @ directions, respectively. In view of the
assumption (1), it is obvious that ¥ and v are much larger than w; hence all the non-linear terms
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C : Point ot which w is defined

S Point ot which u, ond v, ars defined

s O: Point on the walt from which coordinate S
s measured

n (‘py)

Fig. 2. Cross section of curved members and coordinate systems.
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which contain (dw/ax), (dw/dy) and (dw/a@) can be neglected in egns (2) and thus eqns (2) can
be reduced to the following form:

*'3}“‘2[( )2+( )] G2
gl @] o
(-1 3)

lou w ow louodu wau 13vdv

=158 ax Troxas roxtranal 6

€ =

_5_W+lﬂ+l£‘i?.!_£?_'i+lézﬂ
Y rod rayed rady rdyad
ou  ov Judu  dviv

= e ___+___
Yo = dy * ax + ox dy ax dy’ 3D

(3e)

The assumption (3) can be expressed mathematically as
&=0, =0, v,=0 @)

Applying these conditions into eqns (3a), (3c) and (3f) and integrating respectively, lead to
the following two expressions for # and v;

u=u;~(y—y,)sin B - (x - x;1-cos g) (5a)
v=0,+(x—x;)sin B—(y—y:}1—-cos B) (5b)

where u,, v, and B are the integration constants which can be explained physically as the
displacements of an arbitrary reference point S(x,, y;) in the x and y directions and the rotation
about the axis normal to the plane of § in the anti-clockwise direction to be positive,
respectively.

The normal and tangential displacement components ¢ and 7 in the curvilinear coordinate
axes n and s are related to u, and v, by the following equations;

E=lu+mp

= lu; + my, - p, sin 8 — p,(1-cos B) (6a)
n=-mu+ly

= — mu, + lvs + p, sin B — p,(1 - cos B) (6b)

where / and m are the direction cosines which can be expressed as

l=cos(n,x)= 7 = % (7a)
m =cos (n, y) = an = —g%. (Tb)

The quantities p, and p, are the distances between any point on the cross section and the
reference point S in the s and n directions, respectively (Fig. 2), and are given by

pe=—(x=x)m+(y—y)l (7¢)

pn=(x—=x)+(y-y;)m. (7d)
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Similarly, the shear strains on any surface parallel to the middle surface of the wall, y,, and
those on the planes normal to the middie surface, vy, are related to the shear strains vy, and y,, in
the (x, y, 8) coordinate system by
Yos = I¥sy — MYex (8a)
Yon = 170x + Mys,. (Sb)

In view of egns (3d), (3f), (6) and (7), eqns (8) can be expressed in the following form:
“rastra6as Traas rab Ga)

=,i(z)-zé£+18_ua_u ldvav 193¢
Yoo =T on\7) T on ra8on rabon roe

___ri(_»g) wou 1duou lovdv 1dq
Yos as \r

(9b)

Since open cross sections are considered in this study, the assumptions (4) and (5) can be
interpreted as

Yon =0 (10a)
y%=0 (10b)

where ( )* denotes the quantity defined along the middle line (i.e. n = 0). By using egns (5), (6)
and (9), eqns (10) will lead to the following two differential equations;

3% (%) +[m sin B +1(1-cos B)] l:‘ = %[(uim = vil) sin B —(usl + vsm) cos B+ p,B']
(11a)
’*% (":7*) +[[*sin B — m*(1~cos B)]‘:_:
= L [@il* + vim*) sin B~ (~uim* + vil*)cos B~ p3B]  (11b)

where prime indicates differentiation with respect to 6. Solving the first differential equation

(11a) yields
r* (m/l) sin B—cos B 1 [ (r*> (m1) sin B~cos B]
— * —— —_— p— —
wEw (r) +msin/i’—-lcosﬁ I r

X [(uim —vil)sin B — (ugl + v;m) cos 8+ p,B'} (12)

The exponential terms in eqn (12) can be expressed in the following form of binomal series:

<’.*>(m/l)sin3-cosﬂ _ (1 N r— r*)-(mll)sjnﬂwoss

r r*
. -r* 1 :
=1+(—%smB+cosB)r—r{—+§(—%"SlnB+0053)
— pk\2
x(—L;l-sinB+cosﬂ—l)(r r*') o, (13)

It is obvious that the value of (r—r*)/r* is very small for curved members with thin-walled
section; therefore, eqn (13) can be reasonably approximated in the following way,

(E:)wnsmp—cosﬂ - (_';_'. sin B - cos ﬁ) r— r*. (14)

r r*
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Using eqn (14) and the following geometric relations

x—x*=r—r*=nl (15a)
y—y*=nm (15b)
pn=pitn (15¢)
pr=(x*=x) +(y* - y;)m (15d)
pr=—(x*-x)m+(y*-y)l. (15€)

Equation (12) can be simplified into the following form

x—x*

- y*
w=w*+ - (w"‘cosB--v;sinﬁ—u;cosﬁ)+Lr,.,L

X (—w* sinB+u;sinB—v;cosB)+'—'r%B'. (16)

It is to be noted that the same equation is obtainable by replacing w in the second term of the
left hand side of eqn (11a) by w* and by integrating it. Similarly, the solution of eqn (11b) is
approximately given by

*— s s — JYe
w*=wc—xTxi[—w,cosB+v;sinB+u;cosﬂ—(—wcsinﬁ+u§s1nﬂ-v;cosﬁ)y—k—y—]
y* -y
+(—w. sin B+ u,sin B — v;cos B) R £
s
_ wf—wesinB+u;sinB-v;cos B ') 7
@ ( RZ +Rs (17

where w. = displacement w defined at a reference point C(x,, y.) on the corss section (Fig. 2),
R,, R. =radii of curvature of points S and C, respectively, and

* *_.’L*_ %* 8a
w*=0 Rcﬂc (18a)
Q*=Rs* j; ;‘;, ptds (18b)
Q*=RR. fo ;17 ot ds. (18¢)

Since the reference point C(x,, y.) does not generally lie on the thin wall, in order to relate the

displacement in @ direction in terms of point C, an arbitrary fictitious thin wall is introduced to

connect point C and D as shown in Fig. 2{11]. This segment CD is considered to be

infinitesimally thin and it would not alter the characteristic of the thin-wall member. The

quantity s. in eqn (18c) is designated to be the distance from C to D along the fictitious wall.
Substituting eqn (17) into eqn (16), leads to the following expression for w

"’:wc_x)-zcxc (f_gy;'R::Yc)_i_)’I’z‘Sch_w(k&”+%) (19)

where

f=u,-w)cosB+v.sinB (20a)
g =(u;—wc)sin g ~v;cos 8 (20b)
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r R r
w:;;ﬂ*~r;nps—R—ch. (20¢)

The quantity w denotes the unit warping[1].

2.4 Strain-displacement relations
In view of eqn (4) and (10a), the six strains components in eqns (3) have already been
reduced to only two non-vanishing components namely ¢, and y,,, which can be obtained by

substituting all the three displacements eqns (5) and (19) into eqn (3b) and (9a), as given in the
following:

ea:ﬁ_f.:_&(i’.-_&’. r»)g:.ui-e(g' +£")
+,—1,ius~(y~y,)sinﬁ-(x~xs)(l - cos B)]
+503[3=(r = 38" cos B~ (x = 5B sin - w,
+X= &G gR»)

- , 2
_)‘R’Xg g+tow (i&:f+Rs)] +'2-I;5[u,—(y-—-y,) sin B
= (x = x, )1~ cos B)J

+30 01+ (£~ )8 c05 B = (7~ y)B'sin BT (21
R? { '
o= (2+%)(Rs *%)- @10)

These are the general expressions for the non-vanishing strain components of thin-walled
curved members. It is to be noted that the point S and C can be selected arbitrarily in these
expressions.

Now, two special cases are considered here. Firstly, if the problem is restricted to be small
displacement theory, all the non-linear terms may be omitted. Thus, by using the ap-
proximations,

cos =10, sinf=8 22)

the following expressions for €, and v, can be obtained.
€0_""' R+R+ B (x~ XC)R': ‘E! R, Ei""R:i
-0~ M(wf’-) o)} @

s s

Yos T rr"‘( )(% R,) (23)

These two expressions are exactly the same as those derived by Nishino et al.[11]. Further-
more, if points C and § are selected to be coincident withtheorigin O (ie. x. =y, =x, =y, =0)
and the difference of radius of curvature over the cross section is neglected (i.e. r=R, = R.)},
then eqns (23) can be reduced to the expressions which were obtained by Vlasov[1]. Secondly,
if the curved member is specialized into a straight member and point C is selected to be the
origin O (i.e. x. =y, =0), eqns (21) can be reduced to the following expressions by putting



Large displacement theory of thin-walled curved members 19

dz = rd6 and by making r, R, and R. approaching infinite;

€G=€= w;+%(u;2+ v+ {(y,u;-x,v;) cos B
+ (xX;u5 + y;v3) sin B}B’ — x(v§ sin B + u’; cos B)
- y(-utsinB+vicos B)- 0B+ {(x - X P+ (- 3)IB? (M)
Yos = Yz = 2B’ (24b)

where prime indicates differentiation with respect to z. These are again exactly the same as
those obtained by Nishino et al.[20].

2.5 Govemning differential equations for equilibrium and its associated boundary conditions

The governing differential equations for equilibrium and the associated boundary conditions
for curved members can be established on the basis of selecting two reference points S and C
arbitrarily. However, in this section, point C is selected to be coincident with point S because
this gives the simplest form of the governing differential equations for equilibrium and the
associated boundary conditions.

Consider the free body of a curved member which is in equilibrium condition under the
applied distributed external loadings P and the applied external stresses f at both ends of the
member. By the principle of virtual work[15]

f " f (Gudes + TaBye) dAr df = f " f PordArde + [ " f for dA]" 25)
6 JA 6 JA A 8
where
P = puis + Byl + Bole (26a)
f = Tonln + Tagls + Gl (26b)
T = ui, + vi, + wig
= &ip + ni; + wig (26¢)
V=1 at =6,
=-1 at 8=46. (26d)

Here, i;, i,, i, are the unit vectors in the cylindrical coordinate system (x, y, 8); i,, i, i are the
unit vectors in curvilinear coordinate system (n, s, 8); and 8, and 6, are the values of 4 at both
ends of the members. Substituting eqns (5), (6), (19) and (21) into the virtual work equation (25)
and introducing the following terms

g = L RL,I;‘ dA (27a)
g = L 7 P da (2Tb)
do = L R PrdA @70
o= [ £ 5y -0 da @)

, = L-I—;:p'.(x-—x,)dA @7¢)
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o
mw—fARs Pew dA

o = [ 2[5 2)+ By - 3l 4A
A Ds

'ﬁe = fA '}% [py(x - xs) - ﬁx(y - y:)] dA

N =f &g dA
A

Mx =J’ C;gy dA
A

M, =f Fex dA
A

NL,='[ Gow dA
A

Gx =f (-mTys + I76,) dA
A

Oy = f (177& + men) dA
A

Txy = fA ('FOSPS + iﬂnpn) dA

T = fA ('FOspn - T—Onps) dA

N=f O'gdA
A
szf ondA
A
My=f gix dA
A
M, =‘j. oew dA
A
N= ‘R—: odA
r
Mx= %UaydA
M, = I—iiaadi
M, = ggicnﬂu dA

=
i
X~
S
)
{
=
a
b

Ko
1

£ ae(y — y; )P dA

~|

&
I
x

L og(x — x)(y — ys) dA

> ' x x> Tx» T>» x» T

~|

(27f)

(27g)

(27h)

27)

(27)

(27k)

27

(27m)

(27n)

(270)

(27p)

(28a)

(28b)

(28¢)

(28d)

(28¢)

(28f)

(28g)

(28h)

(28i)

(28)

(28k)
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K, = f R wrda (8))
Al
R;

K, = f — ow(x - x;) dA (28m)

A

R,

K= [ Zowiy-y)aa (28n)

R;n nl
Mgy = . Tos _’Tk_ (2 +F) dA (280)

and integrating by parts, leads to four governing differential equations for equilibrium and
associated boundary conditions which are shown in Appendix 1.

2.6 Force-displacement relations
For this one-dimensional theory, the stresses are directly related to the corresponding
strains by the modulus of elasticity E and shear modulus G of an elastic material. Hence,

0y = Eey (292)
Tas = GYes (29b)

Substituting eqns (21) and (29) into egns (28) yields the force-displacement relations of curved
members. Since the expressions are rather complex, only the linear parts of the relations are
shown in Appendix 2.

Now, in order to express the linear force-displacement relations, the following properties of
cross section must be defined.

a=[ B (30a)
Z,= L Ryaa (30b)
Z,= ]A R raa (300)
L= L Royrda (30d)
b=[ Beca (30¢)
I,= ) -Ii—° xydA (30)
Z,= L Bswaa (30g)
L= L Bs oy aa (30h)
Le= L Bs oxaa (30i)
L=[ Beaa (30)
K= %5,%—2 (z +:—£)2 dA. (30K)

SS Vol. 16, No, I—F
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As mentioned by Vlasov[1], by setting

Z. = 59)' d4A=0 (31a)
ATl
z,,=f&’di=o (31b)
Al
the coordinate origin O in Fig. 2 can be located; and by putting
Zw=f&wdA=0 (3leo)
AT

the position of the origin of s which is the D point in Fig. 2 can be found; and by using the
following two equations

I,,,,=f R xda=0 31d)

AT

L,,,=f R ydA=0 Gle)
Al

the position of the S point, which is usually called the shear center, can be found.

3. APPLICATION—LATERAL-TORSIONAL BUCKLING OF CIRCULAR
ARCHES WITH THIN-WALLED OPEN SECTIONS

3.1 Introduction

The large displacement theory of curved members developed in the previous chapter is
applied to lateral-torsional buckling analysis of circular arches in this chapter. When a planar
arch is subjected to a system of loading in its plane, it may buckle out of its plane. This
phenomenon is analogous to the lateral-torsional buckling of straight members{21]. The
lateral-torsional buckling analysis of arches and rings has been investigated by numerous
authors. An excellent summary of those studies is given in Ref.[22]). However, as pointed out in
this reference, most of the previous investigators have neglected the effect of warping torsional
rigidity in their analyses, and only a few studies have been published in which the warping
effects are taken into consideration(1, 4, 12, 23-26]. Furthermore, except for Cheney{4], all the
investigators have formulated the equations without considering the difference in the radius of
curvature of the member over the cross section.

In this study, a general virtual work equation, which governs the lateral-torsional buckling of
arches and ring segments subjected to an arbitrary system of in-plane loading, will be derived.
This derived equation is linearlized with respect to out-of-plane displacements, but stresses and
displacements at the pre-buckling state are considered to be finite quantities. Thus, the effects
of in-plane deformations on the lateral-torsional buckling analysis can be evaluated through this
analysis.

3.2 Derivation of general form of virtual work equation

Beside the assumptions made in the Section 2, the following additional assumptions are
made in the present analysis: (1) The arch is of a mono-symmetric thin-walled open section with
its symmetric axis laying in the plane of the arch. (2) Prior to buckling, applied loads act in the
plane of the arch and thus the arch deforms in its plane only. (3) During buckling, applied loads
remain fixed in magnitude and direction, but move perpendicularly to the plane of the arch. (4)
In-plane displacements, strains and stresses are finite, but out-of-plane displacements, strains
and stresses are infinitesimally small. (5) No in-plane buckling is considered.

Consider a mono-symmetric crossection shown in Fig. 3(a). The points O, S and D are
chosen in such a way that eqns (31) are all satisfied. The point C is taken as the same as point S.
Due to the symmetry of the cross section, the points O and S i.e. on the x-axis.

In view of the assumption (4), the in-plane displacements are of finite magnitude, ie.
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Fig. 3. Circular arch with uniformly distributed load.

u;, w, = O(1), and the out-of-plane displacements are of infinitesimal magnitude, i.e. v,, 8 = O(¢)
(where € denotes an infinitesimal magnitude). Introducing this assumption to the strain-
displacement relations eqns (21) and neglecting terms higher than O(e?) result in the following
expressions;

ensi - (g8 E ) S (e B

I
om0 o) )
to {38 == Y by o+ - 2B - yaBY (322
AN
where
fe-w)(1-E)+uip (33a)
£ = (= w)B vl 33b)

In deriving eqns (32) we have used y. =y, =0, R. =R, x. = x, and w. = w,.

Next, we shall formulate the virtual work equation of arches just after buckling based on
the strain-displacement relation (32). In the following description, the superscript (0) is used to
denote displacement, strain and force parameters just before buckling, and when these
parameters appear without the superscript, they refer to the incremental values from prebuck-
ling to post-buckling states. Owing to the assumption (4), the incremental values are of Ofe).
Now, the virtual work equation after buckling can be written in the form[15];

f f {(06? + 00)5(€s™ + €0) + (T + 74,)5(YD + ve,)} dAr dé
o
= L {3280, + u,) + GV6(w,® + w,)}R, d8 (34)

where 4, and w, are, respectively, displacement components u and w at the point of
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applciation of external forces. Here, we have assumed that no external forces act at the ends of
members. It is to be noted that, in view of assumption (2), the increments of in-plane forces g,
and g, are zero. Stability analysis based on eqn (34) is called the Euler method[15]. Replacing
us, wy, € and vy in eqns (32) by u,” + u,, w @+ w,, €9 + € and ¥ + y,,, respectively, leads to
the following expressions for variations in the strain componems

(e + €) = By, + By + Se” + Se* (35a)
S(YR + yos) = Syi1 + By + 8y” + 8y, (35b)
Here
5e,, = S(wi+u) x-—x, 6(us—wy) (u,— w, + d)o(u,~ w,)
r r R, R}
sty (36a)

) , 1 '
b€y = R,r (y NI%) {(u;— w,)B} ——R?; (y _ﬁ’:) S{(dOB - v
+ RBYui~ wp)} =% 8(uB) (6b)
def = % { d988) - 8v"~ R, (I + = )53}_729_{ d®sgy

~ 80"+ R8B") ~ =

( y- —-—) d9dsg - sv.+ R,B") (36¢)
e =~ X5 ooy - aovpag + 4 [d‘°*583 5(u'B))

+R, ( 1+ M) B&B} R ( y- -——) (dOB - v+ RB'NdV68

2
- 6v+ ROB)+ 3 88 + 2 [o1+ (x - 1)B 60} + (x - 5)68' (36)
dyn=0 (36¢)
b= (2+5) dicui- w81 (360
by* =2 (245 ) @88 - 801+ R3B) (360)
sy =0 (36h)
d(o) = lls(o)' - Ws(m (36!)

where €, v = strain components due to in-plane displacement increments, e,z, m = strain
components due to coupled in-plane and out-of-plane displacement increments, €%, y¥ = linear
strain components due to out-of-plane displacements, and €**, y** = non-linear stram com-
ponents due to out-of-plane displacements. Similarly, the vanauons in the displacement
components at the point of application of external loads can be determined from eqns (5) and
eqns (19) as follows:

8(u,® + u,) = Suyy + Suyy + Su* + du™’ (37a)
(W, + w,) = dwy; + dwyy + Sw? + SwHe (37b)
where

Suy, = bu, (38a)
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5“]2 =0 (38b)
Suf=0 (38¢)
Su*? = - (x, - x,)P8B (38d)
Sy = Sw, ~ o (i~ w,) (38¢)
sw,z=—;,%a{(u;— w,)B} (38f)
Swe =~ R“—} 5(d®8 + R,8" (38g)
o =~ S B (3(01) - d9Bip). (38h)

Here, x, is the x coordinate of the point of application of external loads. Now, substituting eqns
(35) and eqns (37) into the virtual work equation (34) and neglecting terms higher than O(e?), we
shall obtain

0. [
f z f [osde” + 10,8y + 0/ ¥8e"¥) dAr d6 - i (GO8u* + GOw )R, d0=0  (39)
0 JA 8

where
oy =Ee? and 74 =Gy~ (40)

In deriving eqn (39), we have used the relation
[} -
[ zf (0’0(0) + 0‘9)85“ dAl' d0 = f ’ (q,‘°’8un + q'p(o)SWn)R, dG (41)
9 JA [

and the fact that o, and w are respectively symmetric and antisymmetric with respect to the
x-axis of the cross section. Equation (39) is the most general form of the virtual work equation
governing the lateral-torsional buckling of arches with mono-symmetric thin-walled open
sections, Particular mention is made herein that, although we did not assume that the
increments of in-plane displacements are zero, the resulting virtual work eqn (39) is in-
dependent of those quantities. Thus, the same virtual work equation can be obtained by
assuming that in-plane displacements do not change during buckling. This assumption will
definitely make the formulation of eqn (39) much easier.

Now, if appropriate functions for out-of-plane displacement components are assumed, the
lateral-torsional buckling equation of the arch is easily obtained from the virtual work equation
(39).

3.3 Numerical example

As a numerical example, the circular arch shown in Fig. 3 is considered here. The arch ends
are pinned in its plane and fixed out of its plane. The uniformly distributed load g applied along
the span is located at the distance of h. above the crown. The @ coordinate is measured from
the crown. To make the analysis simple, the following conditions are used; (1) The radius of
curvature of the arch is large as compared with its cross-sectional dimensions so that
r=Ro=R, =R (2) The crosssection is doubly symmetric so that x, =0. (3) The in-plane
displacements and forces obtained from linear analysis are used for the corresponding quan-
tities just before buclking. (4) Product terms of in-plane displacements (i.e. 42 in eqns (36)) are
neglected.

Owing to the condition (1), the cross-sectional properties given in eqn (33) become the same
as those for straight members. In view of the condition (3), the in-plane forces and displace-
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ments are given as

N‘°’=qR[~%—I‘cos€+%coszo] (42a)
M@ =gR*| -®,+Tcos §— % cos 20] (42b)
o_aR[. & 1-k 1+k, . 142k ,
u, —”E7;-q)]—‘2‘+ <D2+-——2—F cosO—TF()sm()- D cos 26 (42¢)

o_ R _ o0 e g 1R 1+8% . ]
W, EL | ®,0-d;sin 8 3 I'écos 6+ 5 Sin 26 (42d)
= 3(8g cos By cos 20y — sin ) + (7 —4&) sin 6, (@2e)
680(2 + cos 20, + k) — 33— &) sin 260 ¢
@y = 7 (4T cos 6~ cos 26) (21)
b, l2 [(1 +8K) cos 80 {Zd)l +(1+ &I cos 00}] (42g)
¢=Lh 42h
K= RTEA" (42h)

Now, assume that the out-of-plane displacement components v, and 8 take the following form;
N
=R 3 Cbul8) = RICY{8.} (432)
N
B =2, Didui(6) = {D}" (g5} (43b)

where C, D;=undetermined parameters and ¢,(8), ¢s(6)=displacement functions which
satisfy the boundary conditions. Since the arch is supported at its both ends, the boundary
conditions are, from eqns (A2) in Appendix 1;
v,=0, B=0, v.=0 and B'-v/R=0 at f§==6 (44)
where 6, is the half subtended angle of the arch (Fig. 3). Using eqns (20), eqns (44) reduce to
v,=v;=B=p=0. (45)

Thus, we shall use the following deflection function to satisfy the above boundary conditions:

$.1(8) = dgi(6) = cos i g— - COs . (46)
0

The in-plane forces ¢ and G, are, respectively, the x and 6 components of the load g per
unit arc length of the arch (Fig. 3). Thus,

G99 =-qgcos’ 6 (47a)
Gs® = q cos 8 sin 6. (47b)

The x coordinate of the point of application of the load, x,, is
x, ={(h. + R)— R cos 6} cos 6. (48)

Substituting eqns (42), (43), (46)(48) into the virtual work equation (39) leads to the
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following homogeneous equation:

@K+ MKl + ALK+ ALK {51 = 0 @)

where [K,] = stiffness matrix, [K,] = geometric matrix (i.e. matrix containing initial in-plane
stresses), [K3] = matrix containing initial in-plane displacements and [K,] = matrix containing
initial in-plane external forces. The quantity A is a non-dimensional load parameter defined as

_4RL’
A=t (50)

where L is the arc length of the circular arch. The matrices [K;] to {K,] are given in Appendix
3, where the following non-dimensional parameters are used:

_El, _ElL, __ EL
Y=REL’ *“REL “"REA
_GKr _ _EL
y= L " a_EI,' (51)

The cross-sectional properties A, I, I, I, and Kr are obtained from eqns (30) with R, =1,
and I,,, is defined by

Ly = f wxy dA. (52)
A

It is to be noted that the value of L,,, is equal to —I, for double symmetric I-section which is
used in this numerical example.

Thus, the buckling load A is computed from the condition that the determinant of the
coefficient matrix in eqn (49) is zero.

3.4 Numerical results

In this numerical example, the first four terms of the displacement function given in eqn (46)
are used in the computation.

First of all, the computer buckling loads are compared with Namita’s results for the Case I
[[K\]+A[K>]| =0 where the initial in-plane displacements are neglected and the uniformly
distributed load is applied at the centre of gravity of the cross section of the arch. For the
purpose of comparison, these computed buckling loads are plotted on Namita’s curves as
shown in Figs. 4 and 5 for rise-span ratio, (a/b), equal to 0.1 and 0.2 respectively. It can be seen
that the computed buckling loads are more or less the same with Namita's results for (a/b)
equal to 0.1 in Fig. 4; and in Fig. 5 for (a/b) equal to 0.2, they are also more or less the same
when the y is within the range of 10~ to 1072 but they are smaller when the v is in the range of

) 1 Qa-= 0.05
$=10 Z | k=o0
] | -
30 '$=|0‘ | a/b =01
Nomita
A 20 / o Author
.._(p=|o'5 L.
IO<
He=0
o 0%{ sl ol
0 10? 1072 10! I

¥

Fig. 4. Comparison of the computed and Namita's[12] results (a/b = 0.1).
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Fig. 5. Comparison of the computed and Namita's{12] results (a/b = 0.2).

1072 to 1. This is a result to be anticipated since, as discussed in Appendix 1, the presently
derived equations of equilibrium for out-of-plane deformations are somewhat different from
those derived by Namita.

The effects of initial pre-buckling displacements on the buckling loads are shown in Table 1.
In the columns indicating I the buckling loads for Case I |[K;]+ A[K3]| =0 are listed, and in the
II columns the buckling loads for Case II |[K;]+ A[K3] + A[K;]| = 0, where the initial in-plane
displacements are considered, are listed. The values with bracket are the percentage increases
in the buckling loads due to the initial in-plane displacements. The values of ¢ and « are fixed,
while the values of the parameters a/b, @ and vy are varied. It is seen that the effects of the
initial displacements are significant only for very shallow arches with the smaller value of y (i.e.
torsionally weak shallow arches). When the rise-span ratio a/b exceeds 0.05, the pre-buckling
displacements have almost negligible effects on the buckling loads regardiess of the values of «
and v. It is also seen that in such arches the buckling loads are not much affected by a.

The effect of parameter x = (EL/R?EA) on the buckling loads are shown in Figs. 6 and 7 for
the rise-span ratio (a/b) equal to 0.1 and 0.2, respectively. It is clear that the value of « has a
significant effect on the buckling loads in the case of (a/b) equal to 0.1 and the buckling loads
are larger if the x values are smalller. In other words, if EI, is kept constant, the arches with
larger radius of curvature and larger cross-sectional area have higher non-dimensional buckling
loads. On the other hand, the effect of the values of « on the buckling loads is not significant for
the case of (a/b) equal to 0.2. Furthermore, it can be seen from Figs. 6 and 7 that the arches
with higher warping torsional rigidity have larger buckling loads; and the effect of warping
torsional rigidity is significant for arches with small St. Venant torsional rigidity. Therefore, if
the warping torsional rigidity is neglected in the analysis, then the buckling loads would be

|l  Cose I l[Kll‘A[Kz'l‘.'{{KJw{tK]l =0
3 4

@=005h/R= 0,0h20)
------ For XK= O _
A === For K =10 ,
For K =10
20
10 .
0

Fig. 6. Effect of parameter x (a/b =0.1).



Table 1. The effects of initial in-plane displacements on the buckling loads

v=10°, K= 10"
a/b = 0.025 a/b = 0.05 a/b = 0.1 afb = 0,2
Y =1.0 Yy = 0.01 vy = 1.0 vy = 0.01 y = 1.0 Yy = 0.01 ¥ = 1.0 Yy = ¢.01
a 1 m| o1 w1 | 1 mf 1 | 1 m| 1 | 1 |
0.1 1180.12]191.41] 69.265/74.162] 54,598 155.023] 28.074 | 28.660{ 39.290]39.341] 23.402/23.478] 35.960| 36.020/10. 346{ 10.343
(6.27) (7.07) (0.778) (1.73) (0.130) (0.329) (0.167) (~0.029)
0.25| 128.18[137.60] 66.927]77.608| 45.808 46,078 32.324[33.475] 38,822[38.879] 2487124, 983] 35.963[36.100] 10.666] 10.652
(7.35) (15.9) (0.589) (3.56) (0.144) (0.450) (0.381) (-0.130)
0.5 | 91.473]96.274] 62.791]78.054] 42,586 [42.805] 33.883]35.282] 38.663]38.732[ 25.366]25.521 35.964]36.227[10.775[10.743
(5.25) (24.3) (0.514) (4.13) (0.178) (0.611) (0.731) (-0.297)
0.75| 75.727(78.656 59.205]73,873[41,482 |41, 685] 34.327[35.787] 38.610]38.691] 25.532] 25.725] 35.965]36.352{10.812] 10.759
(3.87) (24,8) (0.489) (4.25) (0.210) (0.756) (1.076) (-0.490)
1.0 67.196]69.252 56.340[68.34& 40.925 |41.120] 34.52136.005( 38.583]38.677] 25.615[25.843] 35.965[36.476 10.831]10.754
T Goe @y T | T warsy | @y (0.244) (0.902) (1.421) (~0.711)

Note: { and I} indicate the cases where the initial in-plane displacements are neglected and considered, respectively, and the values with brackets are

the percentage increases in the buckling load A due 1o the initial in-plane displacements.
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Fig. 7. Effect of parameter x (a/b =0.2).

underestimated. On the other hand, if the arches have higher St. Venant torsional rigidity the
buckling loads become larger and the effect of warping torsional rigidity becomes insignificant.
Moreover, it also can be seen that all the curves converge to a point at y = 1, i.e. the St. Venant
torsional rigidity equal to the lateral flexural rigidity. This converged buckling load is in-
dependent of warping torsional rigidity and parameter .

The effect of the matrix [K,] on the buckling load is illustrated in Figs. 8 and 9 for the
rise-span ratio a/b equal to 0.1 and 0.2 respectively. The matrix [K,] reflects the so-called
tipping effect[22] that is caused by the in-plane load located above the arch centroidal axis. In
Case II the matrix [K,] is neglected in the calculations, while in Case III it is considered with
h. =0.0 (i.e. the in-plane load is assumed to be applied on the horizontal projection tangent to
the arch at the crown). It can be seen that, from these figures, the buckling loads for Case II
always higher than the Case III under all values of ¢, y and x for (a/b) equal to 0.1 and 0.2 as
shown in Figs. § and 9. One important point to be mentioned is that the two different loading
conditions will not change the converged buckling load of the arches at y=1.

The effects of h,, that is the distances between the crown and the uniformly distributed load
applied on the horizontal projection, on the buckling load are shown in Figs. 10 and 11 for (a/b)
equal to 0.1 and 0.2, respectively. The values of x equal to 10~ and ¢ equal to 107 are used in

N |
" Cose IL | [Kll'/\thl'JltK3N=0 ond Cose I | tKll~.{r_K_‘g~.\Lx§'.\cK‘ﬂ =0
40
. s “ ===
30 I (= 005,K=10,ah= 01
A ~~~-For Cose U
q
20
—————— For Cose IT
o} with h/R =0
IRRES) (RLAL]
O lllll 1 1 llllLLL A 1 1 1 b1 ). A

Gt 03 16° 6" |
,

Fig. 8. Effect of loading conditions (a/b = 0.1).
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| A !
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Fig. 9. Effect of loading conditions (a/b = 0.2).
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40"
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h/R = 040
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Fig. 10. Effect of kR ratio (a/b =0.1).

this evaluation. It is clear that, the buckling loads are smaller if the loading is far away from the
crown of the arch.

4. CONCLUSIONS
In this study, the most important equations are the well established strain-displacement
relations (21) for curved members with thin-walled open sections. By using these strain-
displacement relations in the variational principles in elasticity, the governing differential
equations for equilibrium and the associated boundary conditions can be obtained with no

difficulty, The advantage of this approach is that the geometric consideration of the deformed
member need not be considered in the formulations.

The application of these derived strain-displacement relations is illustrated in the lateral-
torsional buckling analysis of circular arches. The governing equation for lateral-torsional
buckling is derived by using these relations through the Euler method in variational principies in
elasticity. The buckling loads are evaluated under different values of the non-dimensional
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Fig. 11. Effect of hJR ratio (a/b = 0.2).
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APPENDIX 1

Tl.le dgrfved governing differential equations for equilibrium and the associated boundary conditions are given herein.
For simplicity only those equations that are derived expanding sin 8 and cos 8 in eqns (21) in Taylor series and neglecting
the terms higher than O(e?) are shown.

Equations of equilibrium
(a) %’5+%+q,=o (Ala)
) Z- 5 - g - Ht, - y )8+ 4, =0 (Alb)
© %+q‘,=o (Alc)

@ F+ g M- nN+ 04 - N1+ [ - (- S - w

+ Mvv: + N’{x,vﬁ = y(ug—w)+ (M.x - !;N)“;

1 - ] -3 -w [ -
_M.v(u,—w,)-Kvﬂ]+m..+E{( ,—-';—)(u,—w,)-m,v;-R,m",g}=o (Ald)
where
Q =—'—[M'-xN'+A(u'-w)-A (p'—-"i)-(u'- N-M -M—L)
x R, ¥ 31 (AL X (] k] R, = Ys s R, B
_ .
+ my - (mx - 'E’_)B (AZa)
Q‘=i[M'—yN’—M V—-h—l':'+h'lv’+{(h'l —xN)ﬂ}’+—l{A (i — w,)
¥ R, x s S’ R, 1 ¥ ] R, L] 3
- (- 5)} ]+~ B g (A2b)
T ] ' Mu ] 7 7
= Mo+ g (M2 (M, =2 4N ) 01, - M - 500
+ Az(B’ - f,—) + K.B'] +1i (A2c)
- M, ~xN K,
A=N+2=222= 408 (A2d)
1y KI’
A2=K,—2%-+§? (A2e)
2o M Ky K
A:=M,—y,N~7!+-§:-E5‘ (A2D)
Boundary conditions
(@ w,+;+’(u§—w.)+;—"v;=(‘. or N=wN (Ada)
® =G o Q=nl (A3b)
© u-w=C or M,-(M,-%)B-——v.{ﬁ,—(f{,—%)ﬁ} (A3c)
@ v=C o Q=ud, (A3d)

© v,=C or M,+MB=u(M+Mp) (A3e)
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® B=Cy or r=u9{f+%+ki(ﬁ,-—1:—)(u,-w,) —Mlv, ,,3} (A3M)
® B’—;—j=f‘v or M, =uM, (A3)

where C,~ C; are prescribed values at the boundaries.

Now the derived equations of equilibrium are compared with those obtained elsewhere[12-14, 18). In the present
derivations the axial displacement w, has been defined at the same reference point as u, and v, (i.e. point S) while in the
other studies the axial displacement is defined at the origin of the coordinates (i.e. point 0). This makes the direct
comparisons difficult and therefore it is assumed that the cross section is such that x, = y, = 0. When the initial radius of
curvature of the member is large as compared with its crosssectional dimensions (i.e. r = R,), the following approximations
are valid (see eqns 28):

N=N, M;=M, M,=M, M, =M, (A4)

If eqns (Ad) and x, = y, =0 are substituted into eqns (Al) and (A2), and the underlined terms in those equations are
neglected, the resulting equations become exactly the same as those derived by Enda[13, 14). The differences of thé Enda's
equations from the present ones result from the following additional approximations made by him: (1) The nonlinear term
u? in eqn (3b) has been neglected; (2) The linearized expression for the rate of twist (i.e. the term following w in eqn 19)
has been used; and (3) The distributed external moments ,, m,, ., and ., have not been considered.

Next the present equations of equilibrium are compared with those derived by Namita[12]. It has been found that
Namita’s equations are somewhat different from those obtained by the authors as well as Enda. For comparison Namita's
equations corresponding to eqns (Alc) and (Ald) (out-of-plane equilibrium equations) are shown below:

o i G ) G )

I
+E{m,+m,(ﬁ )}+q, 0 (ASa)
M o L (M- MB)+-5 M5+ (K, + K,)BY - My(ui— w))
R TR, h R2 s

- M, (v + Rp)] + mys = 0. (ASb)

It is seen that the expressions for the underlined terms in eqn (ASa) are different from the corresponding terms in eqn
(Alc) with eqn (A2b). It is to be noted that in the case of a straight member the equilibrium equations derived by the
authors and by Enda reduce to the presently accepted equations {19}-{21], while the Namita's equation (ASa) fails to agree
with the equation.

Last comparison is made with the equations of equilibrium derived by Nair and Hegemier[18]. The equations for
out-of-plane deformations can be written, using the present notation, as follows:

[

R, +4,=0 (Aba)
Moy Mo, 1S (5-2)} - - wos ms ,
R TRTR2 (K. +K,) R - M (u- w)+ Myvs+ Me(u, + wy)

- Moyt~ w)- K, (8 PR—) K s w | s - w) - ) =0 (ASb)

where
! , ; h
Q,=,—€[M = My, + Noj+ (M,B) - ,R R{M(u, Wy + (t + W)

-(K, +1()(3 )+Msv(“:+“’:) ( ,(3*;_3))'

- (%‘(u}- w.))’}] + 1, {l -E(u, + Wi)} +m,B. (Ac)

It is to be noted that the original equations contain some additional terms (denoted by P., in Ref.[18}) concerning with the
transverse shearing stresses. Note that Hair and Hegemier have not considered the warping torsional effects. Eqautlons
(A6) are quite similar in form to eqns (Alc, d) with (A2b c) if the conditions of eqns (A, x, =y, =0and M, =M, =i, =
0 are introduced; however slight differences are found in the underlined terms in eqns (A6).

Lastly, mention is made of the fact that when the linearized force-displacement equanons shown in Appendix 2 are
substituted into the linear terms in eqns (A1) and (A2) we obtain the equations of equilibrium, in terms of the displacement
components, that have the same degree of accuracy as the beam-column equations for straight members[21].

APPENDIX 2

Force-displacement relations for small displacement theory of curved members
The linear parts of the force-displacement relfations derived with the conditions of eqns (31) are shown below:



Large displacement theory of thin-walled curved members
N=Rﬁ[w;+u, +Y, (;—”,+ﬂ) +£(u2— w;)]
M, = [EI ( +ﬁ)+——“(u, w,)]
M,=-= [EI,, (I%+B) +~kf(uﬁ— w;)]
Mo~ 5 ()

Msv = GKT (’3 R )

APPENDIX 3
The matrices [K3), [K2), [K;) and [K.] in eqns (49) are given in the following:

%K (Kl
“"]‘I [(K.m umu]‘”
wa=["

[[KZ]II [KZ]IZ]
1K)h (Ko
ko= [ [l o] demee
K= J [[K‘ [K‘]"]—‘—do

where

[Kidu=(+ e HeYT + yidHeod"
K\ = {6 Hes} - wldHest ~ vioHea™
(Kilz2 = {6s}{da)" + wloiHoa™ + vidaHeoa"

= (B 4 e =222 ) 00"

(=~ (M w1+~ 2 2 ) 003 - 27 001"

(Kl = (iR—x(H +¢,) 2%“‘,){4,’}{%} +(I;I;K_Mw))

(Kb = = (1+ ) dO(d:He"}T +{¢He )
[Ksha = = (1 + §)d® - 5O Hs}" + dNy{o 3T - {dHs)T)
[Kslz = yd (s Hop)" +{d5HdalT) - 24 - 5,%) ¢y} s}

[KJia= (l + % ~ cos 0) cos® 0 sin 8{¢ Hds)™
he
(K= (144 cos 0) cos? s10phignt”
J(O) __,L ‘ U, oy w, (0))

- o El,
0= ﬁ u®

95

(A7a)

(ATb)

(A%¢)

(A7d)

(ATe)

(A8a)

(A8b)

(Ac)

(ABd)

(A%-m)



